

SUBJECT (CODE): DBMS (KCS-501) COURSE: Btech.

UNIT – II (RELATIONAL DATA MODEL AND LANGUAGE)

A relational database stores data in the form of relations (tables). In this model, the data is organized into

a collection of two-dimensional inter-related tables

Relational data model is the primary data model, which is used widely around the world for data storage and

processing. This model is simple and it has all the properties and capabilities required to process data with

storage efficiency.

Concepts

Tables − in relational data model, relations are saved in the format of Tables. This format stores the relation

among entities. A table has rows and columns, where rows represent records and columns represent the

attributes.

Tuple − A single row of a table, which contains a single record for that relation is called a tuple.

Relation instance − A finite set of tuples in the relational database system represents relation instance.

Relation instances do not have duplicate tuples.

Relation schema − A relation schema describes the relation name (table name), attributes, and their names.

Relation key − each row has one or more attributes, known as relation key, which can identify the row in

the relation (table) uniquely.

Attribute domain − every attribute has some pre-defined value scope, known as attribute domain.

Degree: The total number of attributes which in the relation is called the degree of the relation

Constraints

Every relation has some conditions that must hold for it to be a valid relation. These conditions are

called Relational Integrity Constraints. There are three main integrity constraints −

 Key constraints

 Domain constraints

 Referential integrity constraints

Key Constraints

There must be at least one minimal subset of attributes in the relation, which can identify a tuple uniquely.

This minimal subset of attributes is called key for that relation. If there are more than one such minimal

subset, these are called candidate keys.

Key constraints force that −

 In a relation with a key attribute, no two tuples can have identical values for key attributes.

 A key attribute cannot have NULL values.

Key constraints are also referred to as Entity Constraints.

Domain Constraints

Attributes have specific values in real-world scenario. For example, age can only be a positive integer. The

same constraints have been tried to employ on the attributes of a relation. Every attribute is bound to have a

specific range of values. For example, age cannot be less than zero and telephone numbers cannot contain a

digit outside 0-9.

Every domain must contain atomic values (smallest indivisible units) it means composite and multi-valued

attributes are not allowed.

We perform data type check here, which means when we assign a data type to a column we limit the

values that it can contain. E.g. If we assign the data type of attribute age as int, we can’t give it values

other then int data type.Domain constraints are user defined data type and we can define them like

this:Domain Constraint = data type + Constraints (NOT NULL / UNIQUE / PRIMARY KEY / FOREIGN

KEY / CHECK / DEFAULT)

Referential integrity Constraints

Referential integrity constraints work on the concept of Foreign Keys. A foreign key is a key attribute of a

relation that can be referred in other relation.Referential integrity constraint states that if a relation refers to a

key attribute of a different or same relation, then that key element must exist.

Relational Algebra

Relational algebra is a procedural query language, which takes instances of relations as input and yields

instances of relations as output. It uses operators to perform queries. An operator can be

either unary or binary. They accept relations as their input and yield relations as their output. Relational

algebra is performed recursively on a relation and intermediate results are also considered relations.

The fundamental operations of relational algebra are as follows −

 Select

 Project

 Union

 Set different

 Cartesian product

 Rename

We will discuss all these operations in the following sections.

Select Operation (σ)

It selects tuples that satisfy the given predicate from a relation.

Notation − σp(r)

Where σ stands for selection predicate and r stands for relation. p is prepositional logic formula which may

use connectors like and, or, and not. These terms may use relational operators like − =, ≠, ≥, < , >, ≤.

For example −

σsubject = "database"(Books)

Output − Selects tuples from books where subject is 'database'.

σsubject = "database" and price = "450"(Books)

Output − Selects tuples from books where subject is 'database' and 'price' is 450.

σsubject = "database" and price = "450" or year > "2010"(Books)

Output − Selects tuples from books where subject is 'database' and 'price' is 450 or those books published after

2010.

Project Operation (∏)

It projects column(s) that satisfy a given predicate.

Notation − ∏A1, A2, An (r)

Where A1, A2 , An are attribute names of relation r.

Duplicate rows are automatically eliminated, as relation is a set.

For example −

∏subject, author (Books)

Selects and projects columns named as subject and author from the relation Books.

Union Operation (𝖴)

It performs binary union between two given relations and is defined as −

r 𝖴 s = { t | t ∈ r or t ∈ s}

Notation − r U s
Where r and s are either database relations or relation result set (temporary relation).
For a union operation to be valid, the following conditions must hold −

 r, and s must have the same number of attributes.

 Attribute domains must be compatible.
 Duplicate tuples are automatically eliminated.

∏ author (Books) 𝖴 ∏ author (Articles)

Output − Projects the names of the authors who have either written a book or an article or both.

Set Difference (−)

The result of set difference operation is tuples, which are present in one relation but are not in the second
relation.

Notation − r − s

Finds all the tuples that are present in r but not in s.

∏ author (Books) − ∏ author (Articles)
Output − Provides the name of authors who have written books but not articles.

Cartesian Product (Χ)

Combines information of two different relations into one.

Notation − r Χ s

Where r and s are relations and their output will be defined as −
r Χ s = { q t | q ∈ r and t ∈ s}
σauthor = 'tutorialspoint'(Books Χ Articles)
Output − Yields a relation, which shows all the books and articles written by tutorialspoint.

Rename Operation (ρ)

The results of relational algebra are also relations but without any name. The rename operation allows us to
rename the output relation. 'rename' operation is denoted with small Greek letter rho ρ.
Notation − ρ x (E)

Where the result of expression E is saved with name of x.

Additional operations are −

 Set intersection
 Assignment
 Natural join

Relational Calculus

In contrast to Relational Algebra, Relational Calculus is a non-procedural query language, that is, it tells what

to do but never explains how to do it. The relational calculus is similar to the relational algebra, which is also

part of the relational model. Relational calculus is a non-procedural query language. The relational calculus

tells what to do but never explains how to do. Most commercial relational languages are based on aspects of

relational calculus including SQL-QBE and QUEL.

 Tuple relational calculus which was originally proposed by Codd in the year 1972 and

 Domain relational calculus which was proposed by Lacroix and Pirotte in the year 1977

Tuple Relational Calculus (TRC)

Filtering variable ranges over tuples

Notation − {T | Condition}

Returns all tuples T that satisfies a condition.
For example −

{ T.name | Author(T) AND T.article = 'database' }

Output − Returns tuples with 'name' from Author who has written article on 'database'.

TRC can be quantified. We can use Existential (∃) and Universal Quantifiers (∀).

For example −

{ R| ∃T ∈ Authors(T.article='database' AND R.name=T.name)}
Output − The above query will yield the same result as the previous one.
Domain Relational Calculus (DRC)

In DRC, the filtering variable uses the domain of attributes instead of entire tuple values (as done in TRC,

mentioned above).

Notation −
{ a1, a2, a3, ..., an | P (a1, a2, a3, ... ,an)}
Where a1, a2 are attributes and P stands for formulae built by inner attributes.
For example −

{< article, page, subject > | ∈ TutorialsPoint 𝖠 subject = 'database'}

Output − Yields Article, Page, and Subject from the relation TutorialsPoint, where subject is database.

Just like TRC, DRC can also be written using existential and universal quantifiers. DRC also involves

relational operators.

The expression power of Tuple Relation Calculus and Domain Relation Calculus is equivalent to Relational

Algebra.

Projection (π)

Projection is used to project required column data from a relation.

Example :

R
(A B C)

---- ----

1 2 4
2 2 3

3 2 3

4 3 4

π (BC)

B C

2 4

2 3

3 4

Note: By Default projection removes duplicate data.

https://en.wikipedia.org/wiki/Relational_algebra

Selection (σ)

Selection is used to select required tuples of the relations.

for the above relation

σ (c>3)R

will select the tuples which have c more than 3.

Note: selection operator only selects the required tuples but does not display them. For displaying, data

projection operator is used.

For the above selected tuples, to display we need to use projection also.

π (σ (c>3)R) will show following tuples.

A B C

1 2 4

4 3 4

Union (U)

Union operation in relational algebra is same as union operation in set theory, only constraint is for union

of two relation both relation must have same set of Attributes.

Set Difference (-)

Set Difference in relational algebra is same set difference operation as in set theory with the constraint

that both relation should have same set of attributes.

Rename (ρ)

Rename is a unary operation used for renaming attributes of a relation.

ρ (a/b)R will rename the attribute ‘b’ of relation by ‘a’.

Cross Product (X)

Cross product between two relations let say A and B, so cross product between A X B will results all the

attributes of A followed by each attribute of B. Each record of A will pairs with every record of B.

below is the example

A B
(Name Age Sex) (Id Course)
------ ------ -- -------------

Ram 14 M 1 DS

Sona 15 F 2 DBMS
kim 20 M

A X B
Name Age Sex Id Course

Ram 14 M 1 DS
Ram 14 M 2 DBMS

Sona 15 F 1 DS

Sona 15 F 2 DBMS
Kim 20 M 1 DS

Kim 20 M 2 DBMS
Note: if A has ‘n’ tuples and B has ‘m’ tuples then A X B will have ‘n*m’ tuples.

Natural Join (⋈)

Natural join is a binary operator. Natural join between two or more relations will result set of all

combination of tuples where they have equal common attribute.

Let us see below example

Emp Dep

(Name Id Dept_name) (Dept_name Manager)
----- ------- ------ ----- --------------

A 120 IT Sale Y
B 125 HR Prod Z
C 110 Sale IT A

D 111 IT

Emp ⋈ Dep

Name Id Dept_name Manager

A 120 IT A

C 110 Sale Y
D 111 IT A

Conditional Join

Conditional join works similar to natural join. In natural join, by default condition is equal between

common attribute while in conditional join we can specify the any condition such as greater than, less

than, not equal

Let us see below example

R S

(ID Sex Marks) (ID Sex Marks)

---- ------- --- -- ------- -------

1 F 45 10 M 20
2 F 55 11 M 22

3 F 60 12 M 59

Join between R And S with condition R.marks >= S.marks

R.ID R.Sex R.Marks S.ID S.Sex S.Marks

------------ ------ ------- ------- -------

Characteristics of SQL

1. Easy to Learn: SQL is user-friendly, English like language that makes it easy to learn. Learning SQL

doesn’t require prior knowledge.

1 F 45 10 M 20

1 F 45 11 M 22
2 F 55 10 M 20

2 F 55 11 M 22

3 F 60 10 M 20
3 F 60 11 M 22
3 F 60 12 M 59

2. Portable language: SQL is a portable language, which means the software that supports SQL can be

moved to another machine without affecting the capability of SQL interacting with the database on new

machine.

3. Supports wide variety of commands: SQL supports various useful commands such as:

 DDL (Data Definition Language) commands like CREATE, DROP, ALTER.

 DML (Data Manipulation Language) commands like INSERT, DELETE, UPDATE.

 DCL (Data Control Language) commands like GRANT, REVOKE.

 TCL (Transaction Control Language) commands like COMMIT, ROLLBACK.

 DQL (Data Query Language) commands like SELECT.

Reusability: SQL promotes reusability by supporting stored procedures. These stored procedures are

stored SQL statements that can be used to perform a specific task any number of times. This makes it

easier to write SQL statements for a re-occurring task and reusing the saved stored procedure to erform

the same task without rewriting the same SQL statements again.Supports JOIN: SQL supports join hich

is used to combine the data of two or more tables. This can be useful when we need to perform the

operation on multiple tables.Supports UNION: UNION command can be used to join two or more DQL

statement (SELECT statements).Integration: SQL allows integration to non-SQL database applications

as well.Performance: Better performance even if the database size if huge.SQL is scalable and flexible.

SQL is secure.

Advantages of SQL:

SQL has many advantages which makes it popular and highly demanded. It is a reliable and efficient

language used for communicating with the database. Some advantages of SQL are as follows:

Commonality. One of the main benefits of using SQL is the commonality of the language. ...

1. Simplicity. Another benefit of using SQL is the simplicity of the language. ...

2. Integration. ...

3. Speed. ...

4. Alter data within a table. ...

5. Create a table. ...

6. Retrieve data. ...

7. Change data structure.

Applications of SQL:

 SQL is used by developers and DBAs (Database Administrators) in writing Data Integration Scripts.

 It is used to deal with analytical queries to analyze the data and get instincts from it.

 Retrieving Information

 Modification/Manipulation of data and database table such as Insertion, Deletion and Updating.

DDL (Data Definition Language)

DDL or Data Definition Language actually consists of the SQL commands that can be used to define the

database schema. It simply deals with descriptions of the database schema and is used to create and modify

the structure of database objects in the database.DDL is a set of SQL commands used to create, modify, and

delete database structures but not data. These commands are normally not used by a general user, who

should be accessing the database via an application.

List of DDL commands:

 CREATE: This command is used to create the database or its objects (like table, index, function, views,
store procedure, and triggers).

 DROP: This command is used to delete objects from the database.

 ALTER: This is used to alter the structure of the database.
 TRUNCATE: This is used to remove all records from a table, including all spaces allocated for the

records are removed.

 COMMENT: This is used to add comments to the data dictionary.

 RENAME: This is used to rename an object existing in the database.

DQL (Data Query Language):

DQL statements are used for performing queries on the data within schema objects. The purpose of the

DQL Command is to get some schema relation based on the query passed to it. We can define DQL as

follows it is a component of SQL statement that allows getting data from the database and imposing order

upon it. It includes the SELECT statement. This command allows getting the data out of the database to

perform operations with it. When a SELECT is fired against a table or tables the result is compiled into a

further temporary table, which is displayed or perhaps received by the program i.e. a front-end.

List of DQL:

SELECT: It is used to retrieve data from the database.

https://www.geeksforgeeks.org/features-of-structured-query-language-sql/
https://www.geeksforgeeks.org/sql-create/
https://www.geeksforgeeks.org/sql-drop-truncate/
https://www.geeksforgeeks.org/sql-alter-add-drop-modify/
https://www.geeksforgeeks.org/sql-drop-truncate/
https://www.geeksforgeeks.org/sql-comments/
https://www.geeksforgeeks.org/sql-alter-rename/
https://www.geeksforgeeks.org/sql-select-clause/

DML (Data Manipulation Language):

The SQL commands that deals with the manipulation of data present in the database belong to DML or

Data Manipulation Language and this includes most of the SQL statements. It is the component of the SQL

statement that controls access to data and to the database. Basically, DCL statements are grouped with

DML statements.

List of DML commands:

 INSERT : It is used to insert data into a table.
 UPDATE: It is used to update existing data within a table.
 DELETE : It is used to delete records from a database table.

 LOCK: Table control concurrency.

 CALL: Call a PL/SQL or JAVA subprogram.

 EXPLAIN PLAN: It describes the access path to data.

DCL (Data Control Language):

DCL includes commands such as GRANT and REVOKE which mainly deal with the rights, permissions,

and other controls of the database system.

List of DCL commands:
 GRANT: This command gives users access privileges to the database.
 REVOKE: This command withdraws the user’s access privileges given by using the GRANT command.

Though many resources claim there to be another category of SQL clauses TCL – Transaction Control

Language. So we will see in detail about TCL as well. TCL commands deal with the transaction within the

database.

TCL (Transaction Control Language)

Transaction Control Language (TCL) instructions are used in the database to manage transactions. This

command is used to handle the DML statements’ modifications. TCL allows you to combine your statements

into logical transactions.

List of TCL commands:

COMMIT: Commits a Transaction.

 ROLLBACK: Rollbacks a transaction in case of any error occurs.

 SAVEPOINT:Sets a savepoint within a transaction.

 SET TRANSACTION: Specify characteristics for the transaction.

Example of DDL commands:

CREATE

CREATE statements is used to define the database structure schema:

CREATE TABLE TABLE_NAME (COLUMN_NAME DATATYPES[, ...]);

For example:

Create database university;

Create table students;

Create view for_students;

https://www.geeksforgeeks.org/sql-insert-statement/
https://www.geeksforgeeks.org/sql-update-statement/
https://www.geeksforgeeks.org/sql-delete-statement/
https://www.geeksforgeeks.org/sql-lock-table/
https://www.geeksforgeeks.org/mysql-grant-revoke-privileges/
https://www.geeksforgeeks.org/difference-between-grant-and-revoke/
https://www.geeksforgeeks.org/sql-transactions/
https://www.geeksforgeeks.org/sql-transactions/
https://www.geeksforgeeks.org/sql-transactions/
https://www.geeksforgeeks.org/sql-transactions/
https://www.geeksforgeeks.org/sql-transactions/
https://www.geeksforgeeks.org/sql-transactions/

DROP

Drops commands remove tables and databases from RDBMS.
Syntax
DROP TABLE ;

For example:
Drop object_type object_name;

Drop database university;

Drop table student;

ALTER
Alters command allows you to alter the structure of the database.
To add a new column in the table

ALTER TABLE table_name ADD column_name COLUMN-definition;

To modify an existing column in the table:

ALTER TABLE MODIFY(COLUMN DEFINITION ...);

For example:
Alter table guru99 add subject varchar;

TRUNCATE:
This command used to delete all the rows from the table and free the space containing the table.

TRUNCATE TABLE table_name;

Example:

TRUNCATE table students;

INSERT:

This is a statement is a SQL query. This command is used to insert data into the row of a table.
INSERT INTO TABLE_NAME (col1, col2, col3, ... col N)
VALUES (value1, value2, value3, valueN);

Or

INSERT INTO TABLE_NAME

VALUES (value1, value2, value3, valueN);

For example:
INSERT INTO students (RollNo, FIrstName, LastName) VALUES ('60', 'Tom', Erichsen');

UPDATE:

This command is used to update or modify the value of a column in the table.
UPDATE table_name SET [column_name1= value1, .. column_nameN = valueN] [WHERE CONDITION]

For example:
UPDATE students
SET FirstName = 'Jhon', LastName= 'Wick'

WHERE StudID = 3;

DELETE:

This command is used to remove one or more rows from a table.

DELETE FROM table_name [WHERE condition];

For example:
DELETE FROM students

WHERE FirstName = 'Jhon';

Examples of DCL commands:

Commands that come under DCL:

 Grant

 Revoke

Grant:
This command is use to give user access privileges to a database.
GRANT SELECT, UPDATE ON MY_TABLE TO SOME_USER, ANOTHER_USER;

For example:

GRANT SELECT ON Users TO'Tom'@'localhost;

Revoke:
It is useful to back permissions from the user.
REVOKE privilege_nameON object_nameFROM {user_name |PUBLIC |role_name}

For example:

REVOKE SELECT, UPDATE ON student FROM BCA, MCA;

Example of TCL:

Commit
This command is used to save all the transactions to the database.

Commit;

For example:

DELETE FROM Students

WHERE RollNo =25;

COMMIT;

Rollback
Rollback command allows you to undo transactions that have not already been saved to the database.
ROLLBACK;

Example:

DELETE FROM Students

WHERE RollNo =25;

SAVEPOINT
This command helps you to sets a savepoint within a transaction.

SAVEPOINT SAVEPOINT_NAME;

Example:

SAVEPOINT RollNo;

Example of Data Query Language (DQL) command:

SELECT:

This command helps you to select the attribute based on the condition described by the WHERE clause.

SELECT expressions

FROM TABLES

WHERE conditions;

For example:

SELECT FirstName

FROM Student

WHERE RollNo > 15;

SQL Operators:
Generally, there are three types of operators that are used in SQL.

1. Arithmetic Operators

2. Comparison Operators
3. Logical Operators

Now, let’s look at each one of them in detail.

1. Arithmetic SQL Operators

Arithmetic operators are used to perform arithmetic operations such as addition, subtraction, division, and

multiplication. These operators usually accept numeric operands. Different operators that come under this
category are given below-

Operator

Operation

Description

+

Addition

Adds operands on either side of the operator

-

Subtraction

Subtracts the right-hand operand from the left-hand operand

*

Multiplication

Multiplies the values on each side

https://www.simplilearn.com/tutorials/sql-tutorial/how-to-become-sql-developer

/

Division

Divides left-hand operand by right-hand operand

%

Modulus

Divides left-hand operand by right-hand operand and returns the remainder

2. Comparison SQL Operators

Comparison operators in SQL are used to check the equality of two expressions. It checks whether one

expression is identical to another. Comparison operators are generally used in the WHERE clause of a SQL
query. The result of a comparison operation may be TRUE, FALSE or UNKNOWN. When one or both the

expression is NULL, then the operator returns UNKNOWN. These operators could be used on all types of

expressions except expressions that contain a text, next or an image. The table below shows different types of

comparison operators in SQL:

Operator

Operation

Description

=

Equal to

Checks if both operands have equal value, if yes, then returns TRUE

>

Greater than

Checks if the value of the left-hand operand is greater than the right-hand
operand or not

<

Less than

Returns TRUE if the value of the left-hand operand is less than the value of the
right-hand operand

>=

Greater than or

equal to

It checks if the value of the left-hand operand is greater than or equal to the

value of the right-hand operand, if yes, then returns TRUE

<=

Less than or equal

to

Examines if the value of the left-hand operator is less than or equal to the right-

hand operand

<> or !=

Not equal to

Checks if values on either side of the operator are equal or not. Returns TRUE

if values are not equal

!>

Not greater than

Used to check if the left-hand operator’s value is not greater than or equal to
the right-hand operator’s value

!<

Not less than

Used to check if the left-hand operator’s value is not less than or equal to the
right-hand operator’s value

3. Logical SQL Operators

Logical operators are those operators that take two expressions as operands and return TRUE or False as
output. While working with complex SQL statements and queries, comparison operators come in handy and
these operators work in the same way as logic gates do. Different logical operations available in SQL are
given in the below table.

Operator

Description

ALL

Compares a value to all other values in a set

AND

Returns the records if all the conditions separated by AND are TRUE

ANY

Compares a specific value to any other values in a set

SOME

Compares a value to each value in a set. It is similar to ANY operator

LIKE

It returns the rows for which the operand matches a specific pattern

IN

Used to compare a value to a specified value in a list

BETWEEN

Returns the rows for which the value lies between the mentioned range

NOT

Used to reverse the output of any logical operator

EXISTS

Used to search a row in a specified table in the database

OR

Returns the records for which any of the conditions separated by OR is true

NULL

Returns the rows where the operand is NULL

VIEW

A view can contain all rows of a table or select rows from a table. A view can be created from one or many

tables which depend on the written SQL query to create a view. A view is simply any SELECT query that has
been given a name and saved in the database. For this reason, a view is sometimes called a named query or

a stored query.

Views, which are a type of virtual tables, allow users to do the following −

 Structure data in a way that users or classes of users find natural or intuitive.

 Restrict access to the data in such a way that a user can see and (sometimes) modify exactly what they

need and no more.

 Summarize data from various tables which can be used to generate reports.

Consider the CUSTOMERS table having the following records −

+ + -+
| name | age |
+ + -+

Ramesh	32
Khilan	25
kaushik	23

Chaitali	25
Hardik	27
Komal	22

| Muffy | 24 |

+ + -+

INDEXES

An index helps to speed up SELECT queries and WHERE clauses, but it slows down data input, with

the UPDATE and the INSERT statements. Indexes can be created or dropped with no effect on the data

an index, as you would expect, is a data structure that the database uses to find records within a table more

quickly. Indexes are built on one or more columns of a table; each index maintains a list of values within that

field that are sorted in ascending or descending order. Rather than sorting records on the field or fields during

query execution, the system can simply access the rows in order of the index.

Syntax: As you would expect by now, the SQL to create an index is:
 CREATE INDEX <indexname> ON <tablename> (<column>, <column>...);

To enforce unique values, add the UNIQUE keyword:

 CREATE UNIQUE INDEX <indexname> ON <tablename> (<column>, <column>...);

To specify sort order, add the keyword ASC or DESC after each column name, just as you would do in an

+ + +- + +- -+

| ID | NAME | AGE | ADDRESS | SALARY |
+ + +- + +- -+
| 1 | Ramesh | 32 | Ahmedabad | 2000.00 |

| 2 | Khilan | 25 | Delhi | 1500.00 |

| 3 | kaushik | 23 | Kota | 2000.00 |
| 4 | Chaitali | 25 | Mumbai | 6500.00 |

| 5 | Hardik | 27 | Bhopal | 8500.00 |

| 6 | Komal | 22 | MP | 4500.00 |
| 7 | Muffy | 24 | Indore | 10000.00 |

+ + +- + +- -+

SQL > CREATE VIEW CUSTOMERS_VIEW AS
SELECT name, age

FROM CUSTOMERS;

SQL > SELECT * FROM CUSTOMERS_VIEW;

ORDER BY clause.

To remove an index, simply enter:

 DROP INDEX <indexname>;

SUBQUERY

A Subquery or Inner query or a Nested query is a query within another SQL query and embedded within the

WHERE clause.A subquery is used to return data that will be used in the main query as a condition to further

restrict the data to be retrieved.

SELECT column_name [, column_name]

FROM table1 [, table2]

WHERE column_name OPERATOR

(SELECT column_name [, column_name]
FROM table1 [, table2]

[WHERE])

AGGREGATE FUNCTION
An aggregate function in SQL returns one value after calculating multiple values of a column. We

often use aggregate functions with the GROUP BY and HAVING clauses of the SELECT

statement.Various types of SQL aggregate functions are:

 Count()

 Sum()

 Avg()

 Min()

 Max()

INSERT
This is a statement is a SQL query. This command is used to insert data into the row of a table.
INSERT INTO TABLE_NAME (col1, col2, col3, ... col N)

VALUES (value1, value2, value3, valueN);

Or

INSERT INTO TABLE_NAME

VALUES (value1, value2, value3, valueN);

For example:
INSERT INTO students (RollNo, FIrstName, LastName) VALUES ('60', 'Tom', Erichsen');

UPDATE
This command is used to update or modify the value of a column in the table.
UPDATE table_name SET [column_name1= value1, .. column_nameN = valueN] [WHERE CONDITION]

For example:
UPDATE students
SET FirstName = 'Jhon', LastName= 'Wick'

WHERE StudID = 3;

DELETE
This command is used to remove one or more rows from a table.
DELETE FROM table_name [WHERE condition];

For example:
DELETE FROM students

WHERE FirstName = 'Jhon';

https://www.simplilearn.com/tutorials/sql-tutorial/group-by-in-sql
https://www.simplilearn.com/tutorials/sql-tutorial/sql-having

JOIN

SQL Join statement is used to combine data or rows from two or more tables based on a common field

between them. Different types of Joins are as follows:

 INNER JOIN
 LEFT JOIN

 RIGHT JOIN

 FULL JOIN

A. INNER JOIN
The INNER JOIN keyword selects all rows from both the tables as long as the condition is satisfied. This
keyword will create the result-set by combining all rows from both the tables where the condition satisfies

i.e value of the common field will be the same.

Syntax:
SELECT table1.column1,table1.column2,table2.column1,....

FROM table1
INNER JOIN table2

ON table1.matching_column = table2.matching_column;

B. LEFT JOIN
This join returns all the rows of the table on the left side of the join and matches rows for the table on the

right side of the join. For the rows for which there is no matching row on the right side, the result-set will
contain null. LEFT JOIN is also known as LEFT OUTER JOIN.

SELECT table1.column1,table1.column2,table2.column1,....

FROM table1
LEFT JOIN table2

ON table1.matching_column = table2.matching_column;

C. RIGHT JOIN
RIGHT JOIN is similar to LEFT JOIN. This join returns all the rows of the table on the right side of the

join and matching rows for the table on the left side of the join. For the rows for which there is no

matching row on the left side, the result-set will contain null. RIGHT JOIN is also known as RIGHT

OUTER JOIN.
SELECT table1.column1,table1.column2,table2.column1,....
FROM table1
RIGHT JOIN table2

ON table1.matching_column = table2.matching_column;

D. FULL JOIN
FULL JOIN creates the result-set by combining results of both LEFT JOIN and RIGHT JOIN. The result-

set will contain all the rows from both tables. For the rows for which there is no matching, the result-set

will contain NULL values.

SELECT table1.column1,table1.column2,table2.column1,....

FROM table1

FULL JOIN table2

ON table1.matching_column = table2.matching_column;

CARTESIAN JOIN
The CARTESIAN JOIN is also known as CROSS JOIN. In a CARTESIAN JOIN there is a join for each

row of one table to every row of another table. This usually happens when the matching column or
WHERE condition is not specified.

 In the absence of a WHERE condition the CARTESIAN JOIN will behave like a CARTESIAN

PRODUCT . i.e., the number of rows in the result-set is the product of the number of rows of the
two tables.

 In the presence of WHERE condition this JOIN will function like a INNER JOIN.

 Generally speaking, Cross join is similar to an inner join where the join-condition will always
evaluate to True

Syntax:
SELECT table1.column1 , table1.column2, table2.column1...
FROM table1

CROSS JOIN table2;

table1: First table.

table2: Second table

EXAMPLE

SELECT Student.NAME, Student.AGE, StudentCourse.COURSE_ID

FROM Student
CROSS JOIN StudentCourse;

SELF JOIN
As the name signifies, in SELF JOIN a table is joined to itself. That is, each row of the table is joined with

itself and all other rows depending on some conditions. In other words we can say that it is a join between

two copies of the same table.Syntax:

SELECT a.coulmn1 , b.column2

FROM table_name a, table_name b

WHERE some_condition;

EXAMPLE
SELECT a.ROLL_NO , b.NAME
FROM Student a, Student b

WHERE a.ROLL_NO < b.ROLL_NO;

UNION
The Union Clause is used to combine two separate select statements and produce the result set as a union

of both the select statements.

NOTE:

1. The fields to be used in both the select statements must be in same order, same number and same data

type.
2. The Union clause produces distinct values in the result set, to fetch the duplicate values too UNION

ALL must be used instead of just UNION.

Basic Syntax:

SELECT column_name(s) FROM table1 UNION SELECT column_name(s) FROM table2;

UNION ALL
SELECT column1 [, column2]

FROM table1 [, table2]
[WHERE condition]

UNION ALL
SELECT column1 [, column2]

FROM table1 [, table2]

[WHERE condition]

INTERSECT
The following statement combines the results with the INTERSECT operator, which returns only those

unique rows returned by both queries:

MINUS
The following statement combines results with the MINUS operator, which returns only unique rows returned

by the first query but not by the second:

TRIGER
Triggers can be defined on the table, view, schema, or database with which the event is associated. A trigger

is a stored procedure in database which automatically invokes whenever a special event in the database
occurs. For example, a trigger can be invoked when a row is inserted into a specified table or when certain

table columns are being updated.

BEFORE and AFTER of Trigger:

BEFORE triggers run the trigger action before the triggering statement is run.

AFTER triggers run the trigger action after the triggering statement is run.

Suppose the database Schema –
mysql> desc Student;
+-------+---- -------+---- +-- -+- ------+----- ------ -+

| Field | Type | Null | Key | Default | Extra |

+-------+---- -------+---- +-- -+- ------+----- ------ -+

| tid | int(4) | NO | PRI | NULL | auto_increment |

| name | varchar(30) | YES | | NULL | |

| subj1 | int(2) | YES | | NULL | |

| subj2 | int(2) | YES | | NULL | |

| subj3 | int(2) | YES | | NULL | |

| total | int(3) | YES | | NULL | |

| per | int(3) | YES | | NULL | |

+-------+---- -------+---- +-- -+- ------+----- ------ -+

7 rows in set (0.00 sec)

SQL Trigger to problem statement.

create trigger stud_marks

before INSERT

on
Student

for each row

set Student.total = Student.subj1 + Student.subj2 + Student.subj3, Student.per = Student.total * 60 / 100;

SELECT product_id FROM inventories

MINUS

SELECT product_id FROM order_items

SELECT product_id FROM inventories
INTERSECT

SELECT product_id FROM order_items

ORDER BY product_id;

Above SQL statement will create a trigger in the student database in which whenever subjects marks are
entered, before inserting this data into the database, trigger will compute those two values and insert with
the entered values. i.e.,

mysql> insert into Student values(0, "ABCDE", 20, 20, 20, 0, 0);

Query OK, 1 row affected (0.09 sec)

mysql> select * from Student;

+-----+-------+--- --+ -----+-------+--- --+ ----+

| tid | name | subj1 | subj2 | subj3 | total | per |

+-----+-------+--- --+ -----+-------+--- --+ ----+

| 100 | ABCDE | 20 | 20 | 20 | 60 | 36 |
+-----+-------+--- --+ -----+-------+--- --+ ----+

1 row in set (0.00 sec)

Operations in Triggers
We can perform many operations using triggers. Some may be simple and some may be a little complex, but

once if we go through the query its easy to understand.

 DROP A Trigger
DROP TRIGGER trigger name;

 Display A Trigger

The below code will display all the triggers that are present.
The below code will display all the triggers that are present in a particular database.

SHOW TRIGGERS

IN database_name;

Example:

SHOW TRIGGERS IN edureka;

In the above example, all the triggers that are present in the database named Edureka will be displayed.
We also look at some major variants of the triggers that are before insert and after insert. We have already

seen a trigger in the example. But with the help of the table let’s see how exactly this works.

As we have already understood how to create a trigger, now let’s understand the two variants of the trigger

those are before insert and after insert. In order to implement them, let’s create a student table with various
columns as shown below:

CREATE TABLE Student(
studentID INT NOT NULL AUTO_INCREMENT,

FName VARCHAR(20),

LName VARCHAR(20),
Address VARCHAR(30),

City VARCHAR(15),

Marks INT,

PRIMARY KEY(studentID)
);

Before Insert
CREATE TRIGGER calculate

before INSERT

ON student
FOR EACH ROW

SET new.marks = new.marks+100;

After insert trigger
CREATE TRIGGER total_mark

after insert

ON student

FOR EACH ROW

insert into Final_mark values(new.marks);

Here when we insert data to the table, total_mark trigger will store the result in the Final_mark table.

That was all about the operation on triggers, lets now move ahead and look at its advantages and

disadvantages.

Advantages

 Forcing security approvals on the table that are present in the database
 Triggers provide another way to check the integrity of data
 Counteracting invalid exchanges

 Triggers handle errors from the database layer
 Normally triggers can be useful for inspecting the data changes in tables
 Triggers give an alternative way to run scheduled tasks. Using triggers, we don’t have to wait for the

scheduled events to run because the triggers are invoked automatically before or after a change is

made to the data in a table

PL SQL
.” PL/SQL is a database-oriented programming language that extends SQL with procedural

capabilities. It was developed by Oracle Corporation in the early 90s to boost the capabilities of SQL.

r. No. Key SQL PL/SQL

1 Definition SQL, is Structural Query Language
for database.

PL/SQL is a programming language using
SQL for a database.

2 Variables SQL has no variables. PL/SQL has variables, data types etc.

3 Control
Structures

SQL has no FOR loop, if control
and similar structures.

PL/SQL has FOR loop, while loop, if
controls and other similar structures.

4 Operations SQL can execute a single operation
at a time.

PL/SQL can perform multiple operation at
a time.

5 Language
Type

SQL is a declarative language. PL/SQL is a procedural language.

6 Embedded SQL can be embedded in a PL/SQL
block.

PL/SQL can also be embedded in SQL
code.

6 Interaction SQL directly interacts with database
server.

PL/SQL does not directly interacts with
database server.

7 Orientation SQL is data oriented language. PL/SQL is application oriented language.

8 Objective SQL is used to write queries, create
and execute DDL and DML

statments.

PL/SQL is used to write program blocks,
functions, procedures, triggers and

packages.

	SUBJECT (CODE): DBMS (KCS-501) COURSE: Btech.
	Constraints
	Key Constraints
	Domain Constraints
	Referential integrity Constraints
	Relational Algebra
	Select Operation (σ)
	Project Operation (∏)
	Union Operation (𝖴)
	Set Difference (−)
	Cartesian Product (Χ)
	Rename Operation (ρ)
	Relational Calculus
	Notation −
	{< article, page, subject > | ∈ TutorialsPoint 𝖠 subject = 'database'}

	Projection (π)
	Selection (σ)
	Union (U)
	Set Difference (-)
	Rename (ρ)
	Cross Product (X)
	Natural Join (⋈)
	Conditional Join
	Characteristics of SQL
	Advantages of SQL:

	Applications of SQL:
	DDL (Data Definition Language)
	List of DDL commands:

	DQL (Data Query Language):
	List of DQL:
	DML (Data Manipulation Language):
	List of DML commands:
	TCL (Transaction Control Language)
	For example:

	Drops commands remove tables and databases from RDBMS.
	Syntax
	For example:
	For example: (1)
	TRUNCATE:
	Example:

	This is a statement is a SQL query. This command is used to insert data into the row of a table.
	UPDATE:

	For example:
	DELETE:

	For example: (1)

	Examples of DCL commands:
	Grant:
	For example:

	Revoke:
	For example:

	Example of TCL:
	Commit
	For example:

	Rollback
	Example:

	SAVEPOINT
	Example:
	SELECT:
	For example:

	SQL Operators:
	1. Arithmetic SQL Operators
	2. Comparison SQL Operators
	3. Logical SQL Operators

	VIEW
	INDEXES
	SUBQUERY

	AGGREGATE FUNCTION
	An aggregate function in SQL returns one value after calculating multiple values of a column. We often use aggregate functions with the GROUP BY and HAVING clauses of the SELECT statement.Various types of SQL aggregate functions are:
	 Sum()
	 Min()
	This is a statement is a SQL query. This command is used to insert data into the row of a table.
	UPDATE
	This command is used to update or modify the value of a column in the table.

	DELETE
	This command is used to remove one or more rows from a table.

	JOIN
	A. INNER JOIN
	B. LEFT JOIN
	C. RIGHT JOIN
	D. FULL JOIN
	CARTESIAN JOIN
	Syntax:
	EXAMPLE

	SELF JOIN
	UNION
	NOTE:
	Basic Syntax:

	UNION ALL
	INTERSECT
	MINUS
	TRIGER
	BEFORE and AFTER of Trigger:
	SQL Trigger to problem statement.
	 DROP A Trigger
	 Display A Trigger
	Before Insert
	After insert trigger
	Advantages

	PL SQL

